3.1422 \(\int \frac{(b d+2 c d x)^m}{\left (a+b x+c x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=94 \[ -\frac{4 (b d+2 c d x)^{m+1} \, _2F_1\left (1,\frac{m}{2};\frac{m+3}{2};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{d (m+1) \left (b^2-4 a c\right ) \sqrt{4 a-\frac{b^2}{c}+\frac{(b+2 c x)^2}{c}}} \]

[Out]

(-4*(b*d + 2*c*d*x)^(1 + m)*Hypergeometric2F1[1, m/2, (3 + m)/2, (b + 2*c*x)^2/(
b^2 - 4*a*c)])/((b^2 - 4*a*c)*d*(1 + m)*Sqrt[4*a - b^2/c + (b + 2*c*x)^2/c])

_______________________________________________________________________________________

Rubi [A]  time = 0.290762, antiderivative size = 109, normalized size of antiderivative = 1.16, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115 \[ -\frac{2 \sqrt{1-\frac{(b+2 c x)^2}{b^2-4 a c}} (d (b+2 c x))^{m+1} \, _2F_1\left (\frac{3}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{d (m+1) \left (b^2-4 a c\right ) \sqrt{a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]  Int[(b*d + 2*c*d*x)^m/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-2*(d*(b + 2*c*x))^(1 + m)*Sqrt[1 - (b + 2*c*x)^2/(b^2 - 4*a*c)]*Hypergeometric
2F1[3/2, (1 + m)/2, (3 + m)/2, (b + 2*c*x)^2/(b^2 - 4*a*c)])/((b^2 - 4*a*c)*d*(1
 + m)*Sqrt[a + b*x + c*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 36.1067, size = 109, normalized size = 1.16 \[ \frac{8 c \left (b d + 2 c d x\right )^{m + 1} \sqrt{a - \frac{b^{2}}{4 c} + \frac{\left (b + 2 c x\right )^{2}}{4 c}}{{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{- \frac{\left (b + 2 c x\right )^{2}}{4 a c - b^{2}}} \right )}}{d \left (m + 1\right ) \left (- 4 a c + b^{2}\right )^{2} \sqrt{\frac{\left (b + 2 c x\right )^{2}}{4 a c - b^{2}} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((2*c*d*x+b*d)**m/(c*x**2+b*x+a)**(3/2),x)

[Out]

8*c*(b*d + 2*c*d*x)**(m + 1)*sqrt(a - b**2/(4*c) + (b + 2*c*x)**2/(4*c))*hyper((
3/2, m/2 + 1/2), (m/2 + 3/2,), -(b + 2*c*x)**2/(4*a*c - b**2))/(d*(m + 1)*(-4*a*
c + b**2)**2*sqrt((b + 2*c*x)**2/(4*a*c - b**2) + 1))

_______________________________________________________________________________________

Mathematica [B]  time = 0.446417, size = 193, normalized size = 2.05 \[ \frac{(b+2 c x) \left (2 c x \sqrt{b^2-4 a c}+b \sqrt{b^2-4 a c}-4 a c+b^2\right ) \left (2 c x \sqrt{b^2-4 a c}+b \sqrt{b^2-4 a c}+4 a c-b^2\right ) (d (b+2 c x))^m \, _2F_1\left (\frac{3}{2},\frac{m}{2}+\frac{1}{2};\frac{m}{2}+\frac{3}{2};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{(m+1) \left (b^2-4 a c\right )^3 \sqrt{a+x (b+c x)} \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}}} \]

Antiderivative was successfully verified.

[In]  Integrate[(b*d + 2*c*d*x)^m/(a + b*x + c*x^2)^(3/2),x]

[Out]

((b + 2*c*x)*(d*(b + 2*c*x))^m*(b^2 - 4*a*c + b*Sqrt[b^2 - 4*a*c] + 2*c*Sqrt[b^2
 - 4*a*c]*x)*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c] + 2*c*Sqrt[b^2 - 4*a*c]*x)*Hype
rgeometricPFQ[{3/2, 1/2 + m/2}, {3/2 + m/2}, (b + 2*c*x)^2/(b^2 - 4*a*c)])/((b^2
 - 4*a*c)^3*(1 + m)*Sqrt[a + x*(b + c*x)]*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a
*c)])

_______________________________________________________________________________________

Maple [F]  time = 0.124, size = 0, normalized size = 0. \[ \int{ \left ( 2\,cdx+bd \right ) ^{m} \left ( c{x}^{2}+bx+a \right ) ^{-{\frac{3}{2}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((2*c*d*x+b*d)^m/(c*x^2+b*x+a)^(3/2),x)

[Out]

int((2*c*d*x+b*d)^m/(c*x^2+b*x+a)^(3/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (2 \, c d x + b d\right )}^{m}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (2 \, c d x + b d\right )}^{m}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2),x, algorithm="fricas")

[Out]

integral((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (d \left (b + 2 c x\right )\right )^{m}}{\left (a + b x + c x^{2}\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*c*d*x+b*d)**m/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral((d*(b + 2*c*x))**m/(a + b*x + c*x**2)**(3/2), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (2 \, c d x + b d\right )}^{m}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^m/(c*x^2 + b*x + a)^(3/2), x)